Why Connectivity Matters

DISCUSSION PAPER

Draft updated: 10 May 2018

GICA Global Infrastructure Connectivity Alliance

gica.global
Table of Contents

1. Introduction .. 3

2. Network Logic of Connectivity .. 4

3. Why Connectivity Matters ... 7
 3.1 Economic Growth .. 7
 3.2 Supply Chain Efficiency 8
 3.3 Resilience ... 10

4. Measuring the Impact of Connectivity 11
 4.1 Quantifying Connectivity for Growth 11
 4.2 Connectivity and Market Access 12
 4.3 Estimating Impacts of Connectivity on Network Resilience .. 13
 4.4 Potential Negative Consequences of Connectivity 13

References .. 15
Why Connectivity Matters

Discussion Paper — Draft updated: 10 May 2018

1 Introduction

The idea of connectivity has risen to prominence as *sine qua non* in the modern economy. Increasing connectivity is one of the defining trends of the 21st century. This is reflected in the increasing demand for resources to be invested in linking communities, economies and countries. In the Asia-Pacific region alone the Global Infrastructure Hub (GIH) estimates that investment in connecting infrastructure will more than double in ten years to reach $2.5 trillion per year by 2020 (Marsh and McLennan 2017). However, the needs remain significant, with the Asian Development Bank (ADB) estimating that Asia-Pacific region needs to invest some $26 trillion by 2030, while the global demand for investment in infrastructure over the same period is estimated by McKinsey Global Institute (MGI) and OECD at between $4.7 trillion and $6.0 trillion per year (MGI 2016; OECD 2018;). Middle-income countries account for about a quarter of this demand (ADB et al forthcoming). There are multiple initiatives to meet the growing demand for transport, energy and telecommunications networks spanning the globe, to lay the basic infrastructure for economic, political and social interactions of even greater intensity.

Connectivity is high on the policy agenda of most countries and global development and financial institutions.\(^1\) With the huge sums of money already being spent or needing to be spent, a question that is often taken for granted is why is it important to enhance connectivity? Why does connectivity matter? This short note offers a succinct answer to this question. After all, while there is little controversy over the resources that need to be invested in connectivity, there are varying expectations of what connectivity is intended to achieve. Suffice to say, improving connectivity is considered desirable as a public good. However, the transmission mechanisms for the impacts it is expected to have on economies, firms and society are at best taken for granted if at all they are explicitly stated.

What is connectivity? Different infrastructure financing agencies employ varying definitions of connectivity. An intrinsic characteristic of connectivity is that it is synonymous with networks, which in turn are a set of interconnected nodes. A node can be a person, firm, city, country or other spatial entity. A common thread running through the definitions is that connectivity is a multi-layer concept comprised of different types of networks. It has hard and soft dimensions, and that its impact can be felt by households, firms, cities, countries and regions. Connectivity can be explored at different scales, from the local to the regional and global scales. Connectivity is therefore, an attribute of a network and is a measure of how well connected any one node is

\(^1\) The G20 in 2016 launched the Global Infrastructure Connectivity Alliance (http://gica.global) in order to promote a coherent approach to connectivity.
to all other nodes in the network. The value of connectivity and therefore its significance lies in the role a node and its hinterland plays or is expected to play in a network, the cost of accessing that node and the reliability of connecting to the node. In this note we associate connectivity with interaction between social and economic agents along the links of, or in the nodes connected by, a network. When the cost of interaction is low then we are likely to achieve complete connectivity whereas when the cost is high interaction is limited.

Connectivity has three important attributes: a physical domain, information and financial flows. The large resources aimed at connectivity are therefore aimed at lowering costs, often with an emphasis on physical connectivity. However, and in addition, all network centric concepts share the simple idea that information sharing is a source of potential value. In commerce such value is measured in terms functionality, reliability, convenience and cost.

2 Network Logic of Connectivity

The science of networks provides a common language that helps to unify the tools and approaches to understanding connectivity and why it matters. Network analysis is useful in showing how any connectivity initiative influences the distribution of power between the connected parties, be it regions, cities, firms or communities. Through a network approach we can understand how power is inherently relational. A node that is connected to other nodes has opportunities or faces risks only because it is connected to other nodes. It is for this reason that the position and importance of a node is fundamental in network science.

There are several measures that try to convey how important a node is in a network. A node’s prominence reflects its visibility to the other nodes while a node’s location takes account of the direct relations with other nodes as well as its indirect ties with all other nodes. These concepts are captured in the measure of network centrality. The three most widely used centrality measures are degree, closeness, and betweenness (Freeman 1977; Freeman 1979). A node that has high degree of centrality maintains numerous links with other network nodes. It has great influence over other nodes. A central node occupies a network location that serves as a conduit for larger flows of goods, information, finance, and other transactions with other nodes. In contrast, a peripheral node has a few or no relations and therefore is located spatially at the margins of a network.

In the closeness concept, a central node has minimum path distances from other nodes and does not have to go through many intermediaries in interacting with them. Lastly, a node occupies a “between” position on the geodesics connecting many pairs of other nodes in the network. As an intermediate node along the shortest path connecting two other nodes, a between node might control the flow of information or the exchange of resources, perhaps adding value or charging a brokerage commission for services provided.
These theoretical principles are important to understanding some connectivity initiatives and what they are intended to achieve. For example, Krugman (2017) uses a simplified model that is based on these principles to illustrate how the Belt and Road Initiative (BRI) might affect China’s place in global trade and transport interactions. He uses the example of three locations, A, B and C that have similar transport links between them (dotted lines in Figure 1). Assuming an economic activity that has strong economies of scale, a common characteristic of trade flows, there would be a case to centralize such an activity, and serve multiple markets from one location. That would mean none of the three locations in Figure 1 has an obvious advantage.

Figure 1

![Diagram 1]

Figure 2

![Diagram 2]

Source: Krugman 2017

However, if we assume that two of the transport connections are then improved (solid lines in Figure 2) then location C would have an advantage as it would now have lower access costs to both A and B. All other things being equal, firms would then locate in C as they can serve the two other markets at lower cost. Of course, in practice the advantages of accessing two different destinations that have similar time and cost should include a measure that reflects their relative attraction and there would be a decay function of cost. As such, the connectivity of one location for one type of travel or trade can be quite different to that for another type of travel or trade.

Based on Krugman’s simplified model, China can be argued to presently be in any one of the positions in Figure 1, competing for connectivity to major markets in Europe and North America with ports and transport links elsewhere in Asia and in other regions, e.g., Singapore, Colombo, Long Beach, Hamburg, etc. By improving the overland corridors through BRI, China can transform its position in the networks to be more central (like C in Figure 2). The BRI can therefore be regarded as much a connectivity initiative as it is a strategic trade policy.

The above model can be extended to understand the importance of betweenness centrality in networks. Whereas in Figure 1 there are direct links between the three nodes, in Figure 2 there can be an indirect link between A and B, intermediated by C. This illustrates another attribute that is key to the one of the impacts of connectivity initiatives, which is that links within a network can be transitive, the links between A and C and C and B can lead to a direct link...
between A and B. However, this is beneficial to A and B only if the transfer through C is efficient, and to C if there is some value adding that takes place at that node or there is compensation for services provided. This aspect of connectivity is important to understanding the wider economic benefits of connectivity and in the case of transit territories or countries, how they can benefit from participating in broader initiatives. The case of Khorgos dry port in Kazakhstan is illustrative of an attempt to extract rents from transitive traffic between China and Europe, which generate a significant volume of global trade traffic.

Economic density has a distinct influence on the topology of networks and the magnitude of their impacts. In addition, and based on the concept of preferential attachment, networks grow by connecting to new nodes with a bias towards better-connected nodes. This is most apparent in the role that cities play in connectivity at the national, regional and global scales. Cities have long been and remain a major engine of growth and development, much as they have been through history. Leading cities have higher levels of productivity, are often the main nodes in many GVCs, and in many instances, are well connected with cities in other countries, at times more than they are with urban centers in the same country. Connectivity has always been important to the location of cities. For example, in 1900 all major cities were located along a waterway while many others were sea or river port cities (Glaeser and Kohlhase 2003). Since then connectivity has played an important role in the prospects of cities, through facilitating trade, as centers of high productivity, and through spillovers to surrounding areas. In fact, connectivity at the global scale is defined more by the links between cities, as the nodes through which materials, information and finance flows. This is one of the reasons why trade corridors have been defined as “coordinated bundles of transport and logistics infrastructure and services that facilitates trade and transport flows between major centers of economic activity” (Kunaka and Carruthers 2014, 1).2 As such, depending on a city’s position in a connected network, it can intermediate flows of components and goods between other centers and benefit from its position.

Ultimately, connectivity is largely about increasing interactions, productivity, competition, and market opportunities between cities (see Straub, Vellutini, and Warlters 2008).3 The intensity of interaction, both in terms of transportation and communications networks is a useful measure of connectivity between cities. To assess levels of connectivity, a measure such as centrality can be used. This can shed light on how well connected and integrated cities are along a corridor or between any group of countries, both with each other and to the rest of the world.

3 Why Connectivity Matters

The above example illustrates one of the reasons why connectivity is important for countries. There are several other reasons as identified below.

3.1 Economic Growth

During the recent global financial crisis many advanced economies implemented various types of fiscal stimulus plans. The plans were based on Keynesian economics where increased government expenditure is used to stimulate demand and recover from a depression. A significant proportion of the deficit spending went towards infrastructure, particularly transport and energy networks. PricewaterhouseCoopers (2016) argues that in the short-term, building such networks can indeed, boost aggregate demand through increased activity in construction and associated employment creation. In effect, Feyrer and Sacerdote (2012) did find that in the United States the fiscal stimulus expenditure on infrastructure (and low income households) did have an expansionary effect. In fact, PricewaterhouseCoopers (2016) estimate that one extra dollar spent on infrastructure in Canada increased GDP in the long term by between $2.46 and $3.83. Evidence abounds from elsewhere on the positive effects that connectivity infrastructure has on the economy even at the micro scale. In addition to the short-term impact of investments in connectivity infrastructure, there are also medium and long-term effects in strengthening the foundation for future economic growth, including through making labor markets more efficient and productive.

Two examples best illustrate the role of connectivity in territorial development. The first is of the former Soviet Union and the other is India under the Raj. Up until the breakup of the Soviet Union cities were developed by the central authorities based on transport efficiency, interregional equity, and a need to establish a defensive capacity. In some instances, cities were established to colonize empty territory. The Soviet authorities used the development of an extensive railway network to achieve their objectives. The first line was the Trans-Caspian Railway in 1880, from Krasnovodsk to Samarkand and Tashkent, followed by the Trans-Aral Railway from Orenburg to Tashkent. Great importance was attached to intersecting east-west and north-south lines (Coulibaly et al 2012). Other lines to which this network connected were the Trans-Siberian Railway and the Chinese Eastern Railway, which connected Russia with China and provided a shorter route to Vladivostok.

The evolution of the transport and communications systems in the former Soviet Union led to a hierarchical network of cities that were more evenly distributed by size than in other countries. From a spatial point of view, it became clear that many Eurasian cities were developed in places where they should not have been. The collapse of the Soviet economy weakened the connectivity between Eurasian cities. Without subsidies for transporting goods and services cheaply from one city to another, the more remote cities are isolated from global markets and increasingly uncompetitive. Rail networks became hard to run efficiently while the road networks were underdeveloped and expensive to maintain. For much of the past three decades
air transport has played an important role in connectivity within and between the former Soviet Union republics.

A second example is the development of the railway network of India by the British colonial government. Donaldson (2010) maintains that the railway system brought transformative change to the infrastructure for trade on the subcontinent. By physically connecting all districts of the country, the railways allowed the British to deploy administrative staff and military personnel as well as transport goods and materials for trade. Britain was therefore able to control a large territory with limited manpower and to integrate the economy of India to that of Britain. One of the unintended consequences of travel was of course, greater social awareness, which eventually led to protest by Mahatma Gandhi and eventually independence.

The Soviet and India examples showed that connectivity can legitimately be used as a strategy to achieve political but not always economic objectives. In this case while the Soviet experience has resulted in underutilized railways and some dying cities in India the railway system is one of the largest in the world in terms of track, in fact the largest in terms of passenger volumes and number of employees.

The role of connectivity in meeting geopolitical objectives is still as relevant today as it was in the previous century. One of the abiding narratives on the objectives of the Chinese government in promoting the BRI is that it seeks to enhance its sphere of influence through enhanced connectivity. For instance, Bastian (2017) argues that the BRI allows China to leverage its economic and political influence on Europe as a whole, while Luft (2016) argues for China the BRI is as much a geopolitical strategy as it is an economic one. Several scholars suggest that China is aiming to use for influence its vast reserves of capital, engineering capabilities, excess production capacity as it goes through a downturn. More broadly, however, China is by no means the only country that is promoting a broad regional or global connectivity agenda. Some of the prominent initiatives include Connecting Europe Facility, Central Asia Regional Economic Cooperation Program, Power Africa, Integration Initiative of South America, South Asia Association for Regional Integration, and the Global Alliance on Trade Facilitation. While some of the initiatives are complementary, others are competing. This can leave some poor countries in a dilemma and unable to decide which initiatives to participate in, fearing that they may be excluded from the evolving networks.

3.2 Supply Chain Efficiency

Global value chains (GVCs) are a defining characteristic of the 21st century economy. They have totally transformed the links between firms and countries, and redefined the relationships between trade and competitiveness. The growth of GVCs has been in tandem with improvements in transportation and communications technologies, which have allowed the fragmentation of production in tasks in different locations. Taglioni and Winkler (2016) maintain that among the actions that Governments seeking to join GVCs should create are world-class relationships and climates for foreign tangible and intangible assets. Both actions
depend in part on connectivity to international markets and border efficiency. This is the reason why international indices such as the World Bank’s Logistics Performance Index and the WEF’s Competitiveness Index are important as global indicators of performance and competitiveness. The connectivity of factories and the ability to contract across countries are key determinants of GVCs and the decisions firms make to buy and whether to do so domestically or internationally. Under such circumstances, poor connectivity can mean high costs, low speed, and high uncertainty and can increase the risk of exclusion from GVCs. Thus, successful participation in GVCs requires not just to efficient cross-border linkages, but also resilient and efficient domestic segments of supply chains.

In addition to connectivity for the flow of goods, information and finance, the era of GVCs has also increased the demand for countries to cooperate more with each other, especially in trade. In fact, Buchan, Fatas and Grimalda (2012) argue that connectivity has greatly increased the prospects of cooperation between countries, which in turn has facilitated trade and economic growth. It is not a coincidence that enhanced global connectivity and shrinking trade and transport costs has grown in tandem with a proliferation of regional and multilateral trade agreements. Recent research has demonstrated the potential of trade facilitation, often based on global rules, to reduce logistics costs and boost trade (Hoekman and Nicita 2010; Portugal-Perez and Wilson 2008). However, most of the studies focus on the link between logistics performance and aggregate national trade flows. This in part due to a recognition that whereas distance and geography are fixed, connectivity and logistics performance are subject to change through policymaking in individual countries.

While the national level analysis is necessary to assess how countries fare in terms of overall connectivity, a more granular approach is needed to understand how particular supply chains are affected by the effects of geography. A common approach is to explore logistics performance through the concept of supply chain connectivity. The World Bank and UN-OHRLLS (2014, 9) define supply-chain connectivity as “the ability of the traders in one country to effectively establish reliable supply chains with their customers or suppliers” — their performance being dependent not only on the transport route but also on the logistics business environment, which might even change at the product level. They further argue that supply chain connectivity ultimately not only depends on the quality of physical infrastructure, but also on the quality and sophistication of services, including customs and border control, and trade or transportation policies that affect logistics performance (World Bank and UN-OHRLS 2014). Similar arguments can be extended to the other network industries where reliability and cost, for instance of information technology services or energy supply, are more important attributes rather than just being connected.

Related to supply chains, some of the impacts of connectivity are at the local level. A few studies such as Raballand et al (2010) and Kunaka (2010) have applied more micro-level analysis by looking at the relationship between road infrastructure and road transport and the access of small producers to markets. They conclude that the hurdles to connecting to markets are not so much infrastructure related but more to do with supply chain organization and institutions. An example that illustrates this phenomenon is the effect that investments in Vietnam’s National
Highway No. 5 (NH-5) had on the development of private industrial zones and the local spillovers that it has had. The ADB, DFID, JICA, and the World Bank (forthcoming) find that regions adjacent to the highway have experienced rapid structural change, transforming from agriculture to industrial production largely due to enhanced transport capacity and attraction of foreign direct investment. The firms along the highway are part of major global value chains with leading firms in Asia, especially Japan. Ultimately, it is the effects of connectivity on supply chains that will determine the magnitude of the effects in an economy and the small and large scales.

3.3 Resilience

Between 2010 and 2011 there were three events that had significant effects on global supply chains, which served to underscore some of the effects of global connectivity. The first was the eruption of the volcano Eyjafjallajökull in Iceland and the other two were the Japanese tsunami in 2011 and floods in Thailand the same year. The three events between them caused major disruptions to supply chains across the world, affecting auto and electronics production in seemingly disparate locations across the globe. The events underscored the interconnectedness of supply chains across the world and the importance of investing in diversified connectivity links. Improvements in connectivity have enabled firms to enhance their supply chain efficiencies and to maintain very lean inventories. However, such reliance especially in an era of global value chains, on a limited set of suppliers and the maintenance of centralized inventories has exposed firms to increased risks from disruptions in their supply chains. A disruption, even a short-lived one, in one location can have ramifications across the world. Understanding network resilience is increasingly important in any connectivity program or project.

Disruptions can be experienced also with whole countries, especially landlocked ones that are dependent on one major trade route for access to overseas markets. There are many such countries including Armenia, Bhutan, Malawi, Nepal, Uganda, among others. With such countries, the risks associated with connectivity based on a few options are quite high. When Uganda in 2008 experienced a few weeks of disruption to traffic flows along the route to the Port of Mombasa in Kenya and Nepal in 2015 a blockade of the border crossing at Birgunj into India the events resulted in prices spiking within short periods, and significant economic losses. Consequently, diversifying trade routes is not just matter of economic efficiency but economic survival for such countries.

Reliability of connectivity can therefore have significant effects for firms and countries. It has therefore become important for firms and countries to invest in redundancy systems so as to enhance their resilience in the event of interruptions. However, the economic costs of such redundancy are not always straightforward to estimate.
4 Measuring the Impact of Connectivity

Based on the objectives of connectivity initiatives identified above, there are some general approaches to quantifying connectivity. The impacts can be transmitted through different channels depending on the scale of analysis, ranging from the global to local scale. The tools that can be used to assess impacts and quantify their magnitude would have to be suited to the scale. Fortunately, there is an increasingly robust suite of tools that is available to appraise programs and projects. However, the wider effects are the ones that are the subject of ongoing efforts to make sure they are well captured during program and project appraisal. However, there is a generally a growing body of empirical evidence on the impacts that can be expected from connectivity initiatives.

<table>
<thead>
<tr>
<th>Objective</th>
<th>Examples empirical evidence of impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promoting growth and productivity</td>
<td>Leduc and Wilson (2009) established that during the global financial crisis each $1 spent on highways increased state annual output by $2</td>
</tr>
<tr>
<td>Enhancing access to markets and</td>
<td>Djankov, Freund and Pham (2006) estimated that a day saved in international trade shipments was equivalent to 1% trade volume or a distance of 70km</td>
</tr>
<tr>
<td>opportunities</td>
<td></td>
</tr>
<tr>
<td>Building network resilience</td>
<td>Wilmsmeier and Notteboom (2009) estimated that doubling liner shipping connectivity reduces freight rates by 15%</td>
</tr>
</tbody>
</table>

Some of the main issues to be considered for each objective of connectivity are summarized below.

4.1 Quantifying Connectivity for Growth

Connectivity investments typically are large and lumpy, and it is often difficult to estimate their impacts. However, some general patterns have been observed based on empirical evidence. For instance, Straub and Terada-Hagiwara (2011) found that in Asia investments in infrastructure had a strong positive correlation with growth. While in their case the correlation with productive was inconclusive, the International Air Transport Association (2007) carried out a review of 48 economies over nine years and found a strong positive correlation between connectivity to the global network and labor productivity. In fact, IATA concluded that investment in aviation can generate significant wider economic benefits, and estimated that a 10 percent rise in connectivity, relative to a country’s GDP, will boost labor productivity by 0.07 percent (IATA 2007).

In addition to the wider affects, one of the ways that connectivity affects economic activity is through promoting agglomeration effects. The concept of agglomeration has a long history in economics, going back to David Ricardo’s theory of comparative advantage. Krugman and Venables (1990) show how regions can benefit from improvements in infrastructure, and easier
access to factors of production and markets. In addition, Romer (1990) shows how a concentration of knowledge sustains innovation, giving rise to endogenous growth. Using panel data, De la Roca and Puga (2017) show that a Spanish worker joining a large agglomeration increases his or her productivity over the time (Quinet and Raj 2014).

The approaches to estimating the growth and productivity effects of connectivity include growth modelling, with labor, materials and capital — as main variables. The models can be sued to also explore changes in productivity according to a number of factors, including research and development and the level of capital assets available to each worker. Another common approach to assessing economy wide effects is Computational General Equilibrium (CGE), which is a multi-market model describing how individual businesses and households respond to price signals and external shocks, within the limits of available capital, labor, and natural resources (Dixon and Rimmer 2002). The advantage of this approach is that the model can take into consideration behavioral context and can also utilize prices and markets (Rose and Huyck 2016). However, the approach requires a lot of data, especially the input-output tables.

4.2 Connectivity and Market Access

A widely used approach to estimating interactions between any two nodes in a network is gravity modeling. Gravity Models incorporate a geographical perspective as a function of two criteria: mass (i.e., GDP, capital stocks, population, etc.) and distance. The models attempt to explain connectivity between two economic centers by their bilateral links assuming that infrastructure and institutional frameworks are conducive to increased interaction. For instance, gravity models can be used to assess the change in the volume of freight that might result from transport time or cost savings as a result of corridor improvements. However, gravity modelling is difficult to explore policy changes. The problem is that while cost can be a policy variable and we can use the model to estimate the impact of change in cost, distance is not a policy variable so we cannot use the model to estimate changing distances between the nodes. In addition, gravity modelling is generally not used to evaluate a package of corridor improvements. Moreover, the models can be difficult and time consuming to apply and rely on massive cost databases for their application.

Cost benefit analysis is particularly employed to assess the impacts of specific projects. However, it is generally not utilized for programs or wide area network assessments. In addition, it is also not widely utilized to analyze general policy measures. However, cost benefit analysis has been found to be unsatisfactory for other reasons chief among them, its inability to assess the underlying conditions of some of the key dimensions of connectivity such as contestability of markets, increasing returns which are a key characteristic of most elements of connectivity, and externalities; a failure to distinguish between beneficiaries; and limited ability to assess the big picture, in terms of effects on growth and GDP.

One of the direct ways to measure the impact of connectivity is by focusing on specific value chains or product flows. Such supply chain assessments enable the analysis of impacts on the
chains that would benefit from specific connectivity interventions. Supply chain analyses include investment costs as a component of the costs of the supply or value chain; estimating these costs is difficult and rarely done. Although supply or value chain analyses can add to the understanding of how the benefits of the connectivity investment might be realized, they are not usually used as part of the economic evaluation of proposed corridor improvements.

4.3 Estimating Impacts of Connectivity on Network Resilience

There are two divergent perspectives of network resilience — one applies to instances where a node is connected to the rest of the network by one major link or is reliant on one other node for access to the rest of a network. The other perspective is of a highly connected network where agglomeration forces or other scale effects have encouraged a concentration of activity in one of the nodes or along one link. While the causes may be very different the two networks face similar risks of vulnerability to disruptions to the node or link on which they are dependent. However, in the first instance the effects are isolated to one node while in the other the effects can be transmitted to the rest of the network and over a large area. An example of a « node » being affected by disruptions to the link on which it depends was Ethiopia in 1998 when its access to the seaport of Asmara in Djibouti was interrupted overnight due to the outbreak of war. An example of the second perspective was the flooding that occurred in Thailand in 2011 when it is estimated that the disruptions reduced Thailand’s GDP growth rate from 4.0 percent expected to 2.9 percent (World Bank 2012, 202) and reduced global industrial production by 2.5 percent (UNISDR 2012). Even then the localized effects as measured by insured damage was assessed at only $10 billion (Munich Re 2012, 29). The effects were therefore significantly magnified as they were transmitted through the global production networks. On the flipside, the firms in Thailand that were connected to global networks were able to restore production much faster than those that were less well integrated.

The approaches to quantifying the effects of resilience in networks have evolved mainly from the financial sector and from information technology. They include path and node criticality analysis, network topology and resilience analysis and capital at risk analysis. The approaches are similar in that they focus on the likelihood of threats to the network, the identification of links and nodes that are most at risk, and determination of which of those elements are most vulnerable and their potential effects on the rest of the network. Using these approaches it is possible to quantify the likely consequences of any part of the network not being available. The information can be used for project planning and justifying investments that may otherwise not seem obviously justified when employing standard approaches.

4.4 Potential Negative Consequences of Connectivity

In addition to the desirable impacts on connectivity it is also important to incorporate and factor in any analysis the likely negative spillovers that it can have. Some of the unintended effects that have been observed are:
• Social and environmental externalities such as from increased congestion or accidents from channeling traffic flows over a few links and nodes in a network;
• Encouraging spatial distortions and disparities in an economy;
• Mismatches between where costs and benefits are incurred — for instance regions that serve as transit for network traffic that predominantly benefits the higher density nodes with the network; and
• Increased risks of contagion from being interconnected, e.g., the example above of flooding in Thailand.

The approaches to quantifying the negative externalities of connectivity can be similar to those outlined above. The important issue is that estimating the impacts of connectivity should take into account the differentiated effects it can have on different regions, groups, firms or societies.
References

Why Connectivity Matters | 17

